The relationship between milling a new silica-doped zirconia and its resistance to low-temperature degradation (LTD): a pilot study.

نویسندگان

  • Takashi Nakamura
  • Hirofumi Usami
  • Hiroshi Ohnishi
  • Hisataka Nishida
  • Xuehua Tang
  • Kazumichi Wakabayashi
  • Tohru Sekino
  • Hirofumi Yatani
چکیده

The aim of this study was to determine the machinability of new silica-doped Y-TZP by CAD/CAM and the resistance to low temperature degradation of the milled sample by comparing with a commercial HIP type Y-TZP material. The copings could be milled from silica-doped Y-TZP blocks without chipping, and there was no significant difference between the two types of Y-TZP materials in either the marginal or the inner gap between the abutment and the coping. After aging, the monoclinic content in the commercial Y-TZP copings increased from 25% before testing to 65%, while that of silica-doped Y-TZP copings slightly increased from 23% to 30%. The silica-doped Y-TZP copings did not have any significant difference in fracture load in a comparison between the control group and the aging group, while the commercial Y-TZP copings had a significantly lower fracture load for the aging group than for the control group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-T...

متن کامل

Development of a novel zirconia dental post resistant to hydrothermal degradation

Tetragonal Zirconia Polycrystals stabilized with 3% mol. content of yttria (3Y-TZP) has excellent properties in terms of strength and fracture toughness. These properties are mostly imputable to the transformation toughening mechanism, by which the doped metastable tetragonal phase of zirconia transforms to monoclinic under applied stress ahead of a crack. This phenomenon is accompanied by a vo...

متن کامل

Effect of CaO on the Formation of PSZ and γ-Zirconia Nanoparticles through Ball Milling

The effect of CaO on the formation of β- and γ-zirconia nanoparticles from α-zirconia was investigated and their stability evaluated via mechanical activation. α-ZrO2+8.5wt%CaO powder was milled for 2-150 hours with ball-to-powder weight ratios (BPWR) of 40:1 and 60:1. Structural evaluations were conducted using X-Ray diffraction and scanning electron microscope (SEM). Thermal analysis wa...

متن کامل

Effect of Amorphous Silica Addition on Martensitic Phase Transformation of Zirconia and Investigation of its Tetragonal Structure Stability Mechanisms

This work is focused on the effect of amorphous SiO2 addition on the phase transformation and microstructural evolution of ZrO2 particles. Considering the structural similarities between the amorphous ZrO2 and its tetragonal structure, XRD results showed initial nucleation of metastable tetragonal ZrO2 from its amorphous matrix upon heat treatment. This metastable phase is unstable in pure ZrO2...

متن کامل

Photocatalytic degradation of methylene blue by 2 wt.% Fe doped TiO2 nanopowder under visible light irradiation

In this paper, 2wt.% Fe doped TiO2 nanopowder was prepared by a combination of sol-gel and mechanical alloying methods. The mechanical alloying of Fe powder with Ti(OH)4 gel produced from the sol-gel method was used to produce Fe doped TiO2 nanopowder. The synthesized samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and diffuse reflectan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Dental materials journal

دوره 31 1  شماره 

صفحات  -

تاریخ انتشار 2012